
KRDB Research Centre

for Knowledge and Data

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
Tel: +39 04710 16000, fax: +39 04710 16009

KRDB Research Centre Technical Report:

Value Joins are Expensive over
(Probabilistic) XML. Extended Version

Evgeny Kharlamov1, Werner Nutt1, Pierre Senellart2

Affiliation 1: KRDB, Faculty of Computer Science, FUB
2: Institut Télécom; Télécom ParisTech,

CNRS LTCI, 46 rue Barrault, 75634 Paris, France

Corresponding Evgeny Kharlamov: kharlamov@inf.unibz.it
author Werner Nutt: nutt@inf.unibz.it

Pierre Senellart: pierre.senellart@telecom-paristech.fr

Keywords XML, probabilistic XML, tree-pattern queries, monadic
second-order logic, value joins, complexity

Number KRDB11-01

Date February 23, 2011

URL http://www.inf.unibz.it/krdb/



c○KRDB Research Centre. This work may not be copied or reproduced in whole or part for
any commercial purpose. Permission to copy in whole or part without payment of fee is granted
for non-profit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the KRDB Research Centre,
Free University of Bozen-Bolzano, Italy; an acknowledgement of the authors and individual
contributors to the work; all applicable portions of this copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to the KRDB
Research Centre.



Abstract

We address the cost of adding value joins to tree-pattern queries and monadic second-order
queries over trees in terms of the tractability of query evaluation over two data models: XML
and probabilistic XML. Our results show that the data complexity rises from linear, for join-
free queries, to intractable, for queries with value joins, while combined complexity remains
essentially the same. For tree-pattern queries with joins (TPJ) the complexity jump is only on
probabilistic XML, while for monadic second-order logic over trees with joins (TMSOJ) it already
appears for deterministic XML documents. Moreover, for TPJ queries that have a single join, we
show a dichotomy: every query is either essentially join-free, and in this case it is tractable over
probabilistic XML, or it is intractable. In this light we study the problem of deciding whether a
query with joins is essentially join-free. For TMSOJ we prove that this problem is undecidable
and for TPJ it is ΠP

2 -complete. Finally, for TPJ we provide a conceptually simple criterion to
check whether a given query is essentially join free.

Acknowledgments

This work has been partially funded by the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam, agreement
226513 (http://webdam.inria.fr/).

http://webdam.inria.fr/


1 Introduction

Uncertainty is ubiquitous in data and many applications must cope with this: information extrac-
tion from the World Wide Web [7] or automatic schema matching in information integration [22]
are inherently imprecise. This uncertainty is sometimes represented as the probability that the data
is correct, as with conditional random fields [18] in information extraction, or uncertain schema
mappings in information integration [12]. In other cases, only confidence in the information is
provided by the system, which can be seen after renormalization as an approximation of the
probability. It makes sense to manipulate this probabilistic information in a probabilistic database
management system [9].

Recent work has proposed models for probabilistic data, both in the relational [28, 10, 17] and
XML [21, 2, 16] settings. We focus here on the latter, which is particularly adapted in the case,
common on the Web, when the information is not strictly constrained by a schema, or when it is
inherently tree-like (mailing lists, parse trees of natural language sentences, etc.). A number of
works on probabilistic XML have dealt with query answering for a variety of models and query
languages [21, 16, 1, 4]. On the other hand, queries with value joins, equating character data
in different fragments of XML documents, have received far less attention, with the exception
of [1]. This is despite the fact that value joins proved their importance in SQL: joins are at the
core of SELECT-PROJECT-JOIN, the most used fragment of SQL. We propose in this article a
general study of the complexity of query answering in both XML and probabilistic XML with
hierarchical probabilistic dependencies [26, 2] (see Section 2 for details).

The first work addressing join queries for probabilistic XML data is [1] where we showed that
adding joins to tree-pattern queries (TP) significantly increases complexity of query answering.
This is a data complexity [27] result, i.e, we measured the complexity in the size of the input
probabilistic XML data, and the query is assumed to be fixed, in contrast to combined complexity,
where both the data and the query are parts of the input.

The complexity shift was shown by exhibiting a #P-hard query (see Section 3 for details),
which shows that the whole class of tree-pattern queries with joins (TPJ), is intractable. Recall that
for TP, and, indeed, for all of monadic second-order logic over trees (TMSO), which subsumes
TP, query evaluation is linear in data complexity. This raises a number of questions about query
language with joins, that this work aims at answering:

∙ What is the precise complexity of query evaluation, over XML and probabilistic XML, for
TPJ and TMSO extended with joins (TMSOJ), both in data and combined complexity?

∙ We say that a TMSOJ (resp., TPJ) query has an essential join if it is not equivalent to a
TMSO (resp., TP query). A query without essential join is called an essentially join-free
query. Is it possible to decide, given a TMSOJ or TPJ query, whether this query really has
any essential join?

∙ Is the fact that a query has an essential join responsible for making it hard? In other words,
are all queries with essential joins hard to evaluate?

4



The rest of the paper is devoted to answering these questions. In Section 2 we introduce
deterministic and probabilistic data models, tree-pattern and monadic second-order queries,
and review related work on query answering for these models. In Section 3 we extend the
query models with joins. In Sections 4 and 5 we study the complexity of joins over XML and
probabilistic XML as well as the complexity of deciding essential joins.

5



2 Preliminaries

We briefly define in this section the data model (see, e.g., [2] for more details) and the query
languages we use.

Documents We assume a countable set of labels ℒ. We model an XML document 𝑑 as an
unranked, labeled, and unordered tree. Results of this paper can be extended to ordered trees.
We say that two documents 𝑑1 and 𝑑2 are equivalent, denoted 𝑑1 ∼ 𝑑2, if they share the same
structure and labels, i.e., if there is a bijection between the nodes of 𝑑1 and 𝑑2 preserving the
edges, root, and labels.

Example 1. Consider the document 𝑑PER in Figure 2.1 (top-left) describing the personnel of an
IT department and the bonuses for different projects. It indicates that Rick worked under two
projects (laptop and pda) and got bonuses of 44 and 50 in the former project and 50 in the
latter one. Identifiers are in brackets before labels.

We define a finite probability space of XML documents, or px-space for short, as a pair (𝒟,Pr)
with 𝒟 a set of pairwise non-equivalent documents and Pr mapping every document 𝑑 to a
probability Pr(𝑑) such that

∑︀{Pr(𝑑) | 𝑑 ∈ 𝒟} = 1.

Probabilistic documents Following [2], p-documents are a general syntax for compactly
representing px-spaces. Like a document, a p-document is a tree but is has two kinds of nodes:
ordinary nodes, which have labels and are the same as in documents, and distributional nodes,
which are used to define the probabilistic process for generating random documents. We consider
in this work two kinds of distributional nodes, namely, mux (for mutually exclusive) and det (for
deterministic). Other kinds of distributional nodes are studied in [2], but as shown there, mux and
det alone are enough to represent all px-spaces as p-documents, and mux-det p-documents can
be seen as XML counterparts of the block-independent databases of Dalvi, Ré, and Suciu [9].
An important characteristic of these distributional nodes that will play a fundamental role in the
tractability of query evaluation is the fact that they only describe local probabilistic dependencies
in the tree.

Formally, a p-document ̂︀𝒫 is an unranked, unordered tree, with labels in ℒ∪{mux(Pr)}∪{det}.
If a node 𝑣 is labeled with mux(Pr𝑣) then Pr𝑣 assigns to each child 𝑣′ of 𝑣 a probability Pr𝑣(𝑣′)
with

∑︀
𝑣′ Pr𝑣(𝑣′) ≤ 1. We require the leaves and the root of a p-document to be ordinary nodes,

that is, with labels in ℒ. The class of all mux-det p-documents is denoted PrXMLmux,det.

Example 2. Figure 2.1 (right) shows a p-document ̂︀𝒫PER that has mux and det distributional
nodes, shown on gray background. Node 𝑛52 is a mux node with two children 𝑛53 and 𝑛56, where
Pr𝑛52(𝑛53) = 0.7 and Pr𝑛52(𝑛56) = 0.3.

6



dPER : [1] IT- personnel

[8] Rick

[4] name [5] bonus

[2] person [3] person

[6] name [7] bonus

[51] pda[41] Mary[24] laptop [31] pda

[32] 50[25] 44 [26] 50 [54] 15 [55] 44

IT- personnel

person

bonusRick

person

bonusMary

x x

[1] IT- personnel

[8] Rick

mux

[13] John

[4] name [5] bonus

[2] person [3] person

mux

[6] name [7] bonus

[51] pda

mux

det [56] 15[22] pda

[41] Mary

0.1

[24] laptop

[31] pda

[32] 50

[23] 25 [25] 44 [26] 50 [54] 15 [55] 44

0.7 0.30.9

0.75 0.25

[11]

[21] [52]

[53]

�PPER :

qSBON :IT- personnel

person

bonusRick

x

qRBON :

Figure 2.1: Example p-document ̂︀𝒫PER, possible document 𝑑PER of ̂︀𝒫PER, TP query 𝑞RBON

and TPJ query 𝑞SBON

A p-document ̂︀𝒫 has as associated semantics a px-space J ̂︀𝒫K defined by the following random
process. Independently for each mux(Pr𝑣) node, we select at most one of its children 𝑣′ and
delete all other children with their descendants. We do not delete any of the children of det nodes.
We then remove in turn each distributional node, connecting its ordinary children with their
lowest ordinary ancestors. The result of this process is a random document 𝒫 , and the probability
of a specific run 𝑝𝒫 is the product of all Pr𝑣(𝑣′) for each chosen child 𝑣′ of a mux node 𝑣; when
we choose no children for a mux node 𝑣, we multiply by 1−∑︀

𝑣′ Pr𝑣(𝑣′) instead. Since there
may be several different ways to generate a document equivalent to 𝒫 , we define the probability
Pr(𝒫) of a random document 𝒫 as: Pr(𝒫) :=

∑︀
𝑑∼𝒫 𝑝𝑑. It is easy to see that if we select one

representative of each equivalence class, we obtain a px-space.

Example 3. The only way to obtain a document equivalent to 𝑑PER at Figure 2.1 from ̂︀𝒫PER is
to choose: the left child of 𝑛11, the right child of 𝑛21, and the left one of 𝑛52. The probability of
these choices, and the probability of 𝑑PER, is 0.4725 = 0.75× 0.9× 0.7.

Queries over documents We now define two Boolean query languages over XML docu-
ments, namely monadic second-order queries and tree-pattern queries. We first define join-free
versions of these query languages and add value joins in Section 3. A Boolean query over
documents can be seen as a mapping from every XML document to either true or false. We thus
say that a query 𝑞 is true in a document 𝑑, or that 𝑑 is a model of 𝑞, and we note 𝑑 |= 𝑞. Given
two queries 𝑞 and 𝑞′, we say that 𝑞 is contained in 𝑞′, denoted 𝑞 ⊑ 𝑞′, if all models of 𝑞 are also
models of 𝑞′. Two Boolean queries are equivalent, denoted 𝑞 ≡ 𝑞′, if 𝑞 ⊑ 𝑞′ and 𝑞′ ⊑ 𝑞.

Monadic second-order queries The first query language we consider is monadic second-
order logic over trees (TMSO for short), a general query language that has the property of having
linear data complexity, due to the fact that every TMSO query can be converted (in non-elementary
time) into a deterministic bottom-up tree automaton [24]. TMSO is more expressive than other
classical join-free XML query languages such as tree-pattern queries with Boolean operators [16]
or navigational XPath [5].

TMSO is the logic built up from: (i) unary predicates for labels: for every 𝑙 ∈ ℒ there is a unary
predicate Label𝑙(·); (ii) the binary child relation Ch(·, ·); (iii) node variables; and (iv) monadic
(i.e., unary) predicate variables via Boolean connectors, and first and second-order quantifiers

7



∃𝑥,∃𝑆. Since we consider only Boolean queries, we assume all variables occurring in a TMSO
query are bound by a quantifier. The semantics of TMSO is standard [24]. A descendant predicate
Desc can be expressed in TMSO using the Ch predicate and quantifiers; we will use Desc when
needed as if it were part of TMSO. The language TFO of first-order queries on trees is TMSO
without any second-order quantifiers.

Tree-pattern queries Monadic second-order logic is a very expressive query language on
trees. The language of tree-pattern queries (TP), roughly the subset of navigational XPath with
only child and descendant axes, has more limited expressive power, but, as we shall discuss, more
efficient query evaluation algorithms. Let 𝒳 be a countable set of variables, disjoint from ℒ. A
tree-pattern query is an unordered, unranked tree, with labels in ℒ ∪ 𝒳 , where edges are labeled
either with child, or descendant types. A variable from 𝒳 may not be used twice in the same
query (we will obviously remove this assumption when we introduce joins). Note that in TMSO
variables denote nodes, while in TP, with a slight overloading, they denote (unknown) labels of
nodes. A subquery of 𝑞 ∈ TP is any subtree of 𝑞. A TP query 𝑞 is true in a document 𝑑 if and
only if there is a mapping 𝜈 from the nodes of the query to the nodes of 𝑑 such that: (i) if 𝑟 is
the root of 𝑞, then 𝜈(𝑟) is the root of 𝑑; (ii) if 𝑢, 𝑣 are two nodes of 𝑞 connected by a child edge,
𝜈(𝑣) is a child of 𝜈(𝑢); (iii) if 𝑢, 𝑣 are two nodes of 𝑞 connected by a descendant edge, 𝜈(𝑣) is
a descendant of 𝜈(𝑢); (iv) unless 𝑢 is labeled with a variable of 𝒳 , 𝑢 and 𝜈(𝑢) have the same
labels. A mapping satisfying all these conditions is also called a homomorphism.

Example 4. Consider the query 𝑞RBON in Figure 2.1 (bottom-right) asking whether Rick has
received any bonus, i.e., a bonus 𝑥. Single lines denote child edges and double lines descendant
edges.

Querying p-documents Up to now, we have seen Boolean queries as Boolean functions over
documents. Over a p-document, a Boolean query naturally yields a probability: the probability
this query is true in the set of possible documents defined by this document. More formally, given a
query 𝑞 and a p-document ̂︀𝒫 , the semantics of 𝑞 over ̂︀𝒫 is the probability 𝑞( ̂︀𝒫) :=

∑︀
𝑑∈J ̂︀𝒫K
𝑑|=𝑞

Pr(𝑑).

This definition yields an algorithm for computing the probability of a Boolean query over a
p-document, given an algorithm for determining whether a query is true in a document: just
enumerate all possible worlds, evaluate the query over each of these, and sum up the probability
of documents satisfying the query. This algorithm is exponential-time, however, and it is often
possible to be more efficient than that.

Example 5. The query 𝑞RBON is true in 𝑑PER since Rick indeed received bonuses. Evaluation of
𝑞RBON over ̂︀𝒫PER returns true if and only if one chooses the left child of the distributional node
𝑛11. Consequently, 𝑞RBON( ̂︀𝒫PER) = 0.75.

The complexity of join-free queries Before reviewing the complexity of query answering
for the aforementioned query languages, we make some preliminary remarks on complexity
classes. Note first that for XML all problems are decision problems, i.e., to decide whether a
query matches a document. In contrast, for p-documents all problems are computational, i.e., to

8



TMSO TP

Data Combined Data Combined

XML 𝑂(|𝑑|) [24] PSpace-complete [19] 𝑂(|𝑑|) [24] 𝑂(|𝑑| × |𝑞|) [5]
PrXMLmux,det 𝑂(| ̂︀𝒫|) [8] FPSpace-complete [4] 𝑂(| ̂︀𝒫|) [16] FP#P-complete [16]

Table 2.1: Complexity of query evaluation for join-free queries, with 𝑑 a document, 𝑞 a query,
and ̂︀𝒫 a p-document

compute the probability value. We thus need computational complexity classes such as FP (resp.,
FPSpace), the class of computational problems that can be solved by a Turing machine with
output tape in polynomial time (resp., polynomial space), instead of the decision classes PTime or
PSpace. The class #P is the class of computational problems that can be computed by counting
the number of accepting runs of a nondeterministic polynomial-time Turing machine. Following
[8], we say that a function is FP#P-hard if there is a polynomial-time Turing reduction (that is, a
reduction with access to an oracle to the problem reduced to) from every function in FP#P to it.
Hardness for #P is defined in a standard way using Karp (many-one) reductions. For example,
the function that counts for a propositional 2-DNF formula its number of satisfying assignments
is #P-complete.We note that the use of Turing reductions in the definition of FP#P-hardness
implies that any #P-hard problem is also FP#P-hard. Therefore, to prove FP#P-completeness it
is enough to show FP#P-membership and #P-hardness.

We summarize in Table 2.1 the results that were obtained in the literature on the complexity
of query answering of TMSO and TP queries over documents and p-documents. In terms of
data complexity, evaluating a Boolean query over a document or a p-document can be done in
linear time; this is a consequence of the formulation of TMSO in terms of tree automata [24],
together with the possibility of coding a p-document as a probabilistic tree automaton [8, 4].
In terms of combined complexity, all computation can be made in polynomial space [4] and
TMSO evaluation is PSpace-hard [19]. For tree-pattern queries, the situation is more interesting:
they can also be evaluated linearly in the query size [5] on XML documents, but they become
intractable over p-documents [16] under combined complexity.

9



3 Queries with Value Joins

We explain now how to add joins to the query languages we have presented in the previous
section. We motivate our study of these query languages with joins by noting that adding value
joins to the language dramatically increases the complexity of query answering over probabilistic
document.

We want to extend the ability of query languages on trees by allowing value joins, i.e., allowing
to test for equality of the labels of nodes of the document. This is a very useful feature of query
languages on trees, available in full in XPath 2.0, and, in a restricted form in XPath 1.0.

Joins add non-locality to the query language: it becomes necessary to remember the values of
some nodes to compare them with the values of nodes elsewhere in the document. As we shall
see, this has for consequence that tree-automata based techniques and their corresponding linear
algorithms for query evaluation are no longer possible. Thus, joins cannot be expressed with a
regular TMSO query; one could try to write some disjunction of Label𝑙 predicates, but in the
general case of an infinite set of values this would require infinitely many of them. For instance,
to test that nodes 𝑛 and 𝑚 have the same value:

⋁︀
𝑣∈ℒ (Label𝑣(𝑛) ∧ Label𝑣(𝑚)) .

Therefore, in order to express joins in MSO, an extra binary predicate SameL(·, ·) is required,
whose interpretation consists of pairs of nodes which have the same label, as defined by the
preceding infinite disjunction. Since the joins considered are value joins, we further require that
nodes whose labels are compared using the SameL predicate are document leaves, not internal
nodes. Most results presented here extend to comparison of labels of internal nodes as well, with
the exception of the dichotomy that we obtain in Section 5, as discussed there. The extension of
TMSO with SameL is denoted TMSOJ. Similarly, TFOJ is the extension of TFO with SameL.

The language of tree-pattern queries with joins, TPJ, can be defined similarly but it is simpler
to allow in the TP language a variable to be used multiple times. However, since we also consider
only value joins, a variable used multiple times necessarily refers to a leaf in the documents and
may consequently only appear as a leaf of the query. The class TPJ{/,[]} consist of TPJ queries
without descendant edges.

Example 6. Consider the query 𝑞SBON in Figure 2.1. The query asks whether Rick and Mary
have received a bonus of the same value 𝑥. Clearly, 𝑞SBON is true in 𝑑PER since Rick and Mary
both received a bonus of 44. Evaluation of 𝑞SBON over ̂︀𝒫PER returns true in only one world of
J ̂︀𝒫PERK, 𝑑PER, since in all other worlds either the first person is not Rick, or there is no bonus of
the same value for Rick and Mary: 𝑞SBON( ̂︀𝒫PER) = Pr(𝑑PER) = 0.4725.

Our interest for joins comes from the following observation:

Fact 7 (Lemma 9 of [1]). There is a Boolean TPJ query with #P-hard data complexity over
PrXMLmux,det.

10



Recall that for TP, and, indeed, for all MSO queries, the same problem is linear in the data size.
Thus, adding joins to the language significantly increases the complexity of query evaluation. In
the next sections we have a closer look at this problem.

In the next sections we make a closer look on how hard are the joins for XML and PrXML.

11



TMSOJ TPJ

Data Combined Data Combined

XML
ΣP

𝑘 − complete
ΠP

𝑘 − complete ∀𝑘 ∈ N PSpace-complete PTime NP-complete

PrXMLmux,det #P-hard, in FPSpace FPSpace-complete FP#P-complete
#P− hard
in FPSpace

Table 4.1: Complexity of query evaluation for queries with joins

4 Tree-MSO Queries with Joins

In the previous section we saw that joins in tree-pattern queries come with a high cost: worst-case
data complexity of querying p-documents goes from polynomial-time to #P-hard. In this section
we investigate the cost of joins in TMSO queries.

Results of this section and the following one are summarized in Tables 4.1 (query evaluation)
and 4.2 (deciding essential joins).

Querying p-documents We first show that combined complexity of TMSOJ over p-documents
remains as in the join-free case.

Proposition 8. Query evaluation for TMSOJ over PrXMLmux,det is #P-hard in data complexity
and FPSpace-complete in combined complexity.

Proof. Hardness of data complexity comes form Fact 7. Hardness of combined complexity comes
from the FPSpace-hardness of TMSO over PrXMLmux,det [4]. Let us now show the corresponding
upper bound. Let ̂︀𝒫 be a p-document and 𝑄 a TMSOJ query with 𝑛 different variables. Since
every TMSOJ query can be transformed in prenex normal form in polynomial time, we assume
that 𝑄 is in such a form and 𝑄′ is its matrix, i.e., the quantifier-free part of 𝑄. We describe an
FPSpace algorithm to evaluate𝑄 over ̂︀𝒫 . One enumerates all triples (𝑑, 𝜈, 𝜇) with (1) a document
𝑑 ∈ J ̂︀𝒫K; (2) an assignment 𝜈 of first-order variables of 𝑄 to nodes of 𝑑; (3) an assignment 𝜇 of
second-order variables of 𝑄 to sets of nodes of 𝑑. For each triple one performs a polynomial time
check whether 𝑑, 𝜈, 𝜇 |= 𝑄′.

This check is clearly polynomial time in the size of both the query and the document, since it
boils down to checking that nodes of ̂︀𝒫 given by 𝜈 and sets of nodes given by 𝜇 satisfy Ch, Label,
and SameL conditions of 𝑄′. The size of each triple (𝑑, 𝜈, 𝜇) is polynomial in the size of both 𝑄
and 𝑑. Indeed, |𝑑| is bounded by | ̂︀𝒫|, and assignments 𝜈 and 𝜇 are vectors (of length bounded by
|𝑄|) of node identifiers or sets of node identifiers of 𝑑.

12



v1
1 2

b
1 2
v2

R

ea a

db r

1
a

x

2

x

db
1

a

e

2

e

f(A):

f(A)

q : d1 :

Figure 4.1: Left: translation from a finite relational structure 𝒜 = {𝑅(𝑎, 𝑏), 𝑅(𝑒, 𝑎)} into a tree
𝑓(𝒜) (Lemma 10). Center: a TPJ query with an essential join (Theorem 11). Right:
a document 𝑑 (Theorem 11).

Querying documents The hardness of query evaluation for TMSOJ over probabilistic data
is not surprising, since it is inherited from the hardness of TPJ queries. What is slightly more
surprising is, as we immediately show, that query answering becomes intractable even over
deterministic data.

Proposition 9. Query evaluation for TMSOJ over XML is PSpace-complete in combined com-
plexity. Moreover, for each 𝑘 ∈ N, there are queries 𝑞1 and 𝑞2 of TMSOJ such that query
evaluation of 𝑞1 (resp., 𝑞2) over an XML document is ΠP

𝑘 -complete (resp., ΣP
𝑘 -complete).

The combined complexity result is a direct consequence of the one for the join-free variant of
the problem. To show the more interesting data complexity result, we present a way to encode
arbitrary monadic second-order formulas on relational structures (MSO) into TMSOJ formulas
on trees.

Lemma 10. There are two linear-time functions 𝑓 and 𝑔 s.t.
(i) for every finite relational structure 𝒜, 𝑓(𝒜) is a document and

(ii) for every sentence 𝜙 of MSO, 𝑔(𝜙) is a TMSOJ sentence
such that 𝑓(𝒜) |= 𝑔(𝜙) if and only if 𝒜 |= 𝜙.

Proof. We start with 𝑓 . See an example of 𝑓(𝒜) in Figure 4.1, left, where we encode the relation
𝑅𝒜 = {�⃗�1, �⃗�2}, for 𝑅 of arity 2, and �⃗�1 = (𝑎, 𝑏), �⃗�2 = (𝑒, 𝑎). To generalize, let 𝒜 be a finite
structure over relations 𝑅1, . . . , 𝑅𝑛. Then 𝑓(𝒜) has a root labeled db with 𝑛 children, one for
each relation 𝑅𝑖, labeled 𝑅𝑖. If 𝑅𝒜𝑖 = {�⃗�1, . . . , �⃗�𝑚}, then the node labeled 𝑅𝑖 has 𝑚 children,
one for each tuple �⃗�𝑗 , labeled �⃗�𝑗 . Every node labeled �⃗�𝑗 has arity(𝑅𝑖) children, where the 𝑘-th
child is labeled 𝑘, for 𝑘 ∈ {1, . . . , arity(𝑅𝑖)}, and has only one child labeled with the value of
the 𝑘-th attribute of �⃗�𝑗 . The described function 𝑓 is obviously linear-time in the size of the input
relation 𝒜.

We now exhibit 𝑔. Let 𝜙 be a second-order logic sentence. We first preprocess 𝜙. Let 𝑥 be a
join (first-order) variable of 𝜙 that has 𝑚 occurrences. Then 𝜙𝑥 is 𝜙 where the 𝑖-th occurrence of
𝑥 is substituted with a fresh variable 𝑤𝑖, quantification 𝑄𝑥, where 𝑄 ∈ {∃,∀}, is substituted with
𝑄𝑤1, . . . , 𝑤𝑚, and the resulting formula is conjuncted with the condition

⋀︀𝑚−1
𝑖=1 (𝑤𝑖 = 𝑤𝑖+1).

Application of this transformation to all join variables of 𝜙 yields a formula 𝜙′ where all joins are
“moved” to equality conditions and 𝜙 ≡ 𝜙′.

Let 𝑅(𝑡1, . . . , 𝑡𝑛) be an atom of 𝜙′, such that 𝑅 is not a second order variable in 𝜙′, where,
w.l.o.g, the terms 𝑡1, . . . , 𝑡𝑖 are constants, and 𝑡𝑖+1, . . . , 𝑡𝑛 are variables. Note that due to the

13



preprocessing construction of 𝜙′ all the variables in 𝑡𝑖+1, . . . , 𝑡𝑛 are different. Let 𝑥, 𝑦, 𝑧, 𝑧1, . . . ,
𝑧𝑛, 𝑤𝑖+1, . . . 𝑤𝑛 be variables that do not occur in 𝜙′. One substitutes in 𝜙′ every occurrence of
the atom 𝑅(𝑡1, . . . , 𝑡𝑛) with the following formula:

𝜓𝑅(𝑡1,...,𝑡𝑛)(𝑥, 𝑦𝑅) = ∃𝑧1 . . . 𝑧𝑛∃𝑤𝑖+1 . . . 𝑤𝑛 Labeldb(𝑥)

∧ Ch(𝑥, 𝑦𝑅) ∧ Label𝑅(𝑦𝑅) ∧ Ch(𝑦𝑅, 𝑧) ∧

⎛
⎝

𝑛⋀︁

𝑗=1

Ch(𝑧, 𝑧𝑗) ∧ Label𝑗(𝑧𝑗)

⎞
⎠

∧

⎛
⎝

𝑖⋀︁

𝑗=1

Ch(𝑧𝑗 , 𝑤𝑗) ∧ Label𝑡𝑗 (𝑤𝑗)

⎞
⎠ ∧

⎛
⎝

𝑛⋀︁

𝑗=𝑖+1

Ch(𝑧𝑗 , 𝑡𝑗)

⎞
⎠ ,

where 𝑥 is the same across all atoms of 𝜙′ and 𝑦𝑅 is the same for all atoms with the predicate
name𝑅. If𝑅1, . . . , 𝑅𝑙 are all the predicate names of 𝜙′, then one adds to the resulting formula the
prefix ∃𝑥∃𝑦𝑅1 · · · ∃𝑦𝑅𝑙

. The next step is to substitute in the resulting formula every occurrence
of the equality condition (𝑢 = 𝑣) with the atom SameL(𝑢, 𝑣), which yields 𝜙′′. Let 𝜓 be an
encoding of the tree structure that the function 𝑓 above imposes on all 𝑓(𝒜). One can easily
construct such a 𝜓. Finally, 𝑔(𝜙) = 𝜙′′ ∧ 𝜓.

The described transformation is obviously linear time and translates second-order logic formu-
las over arbitrary relations into TMSOJ formulas. By construction, 𝑓(𝒜) |= 𝑔(𝜙) if and only if
𝒜 |= 𝜙.

Note that the function 𝑔 from Lemma 10 applied to FO formulas returns TFOJ formulas. This
property will be used later on to prove Theorem 11. We are now ready to prove Proposition 9.

Proof of Proposition 9. Combined complexity has been discussed. As shown by Ajtai, Fagin,
and Stockmeyer in [3] (Theorem 11.2) there are MSO queries over graphs whose evaluation is
monadic ΣP

𝑘 -complete for every 𝑘 (monadic ΣP
𝑘 is the class of MSO-expressible problems with a

prefix of 𝑘 alternations of second-order predicates starting with ∃, and an arbitrary first-order
matrix, disregarding the number of alternations of first-order predicates); their negation is thus
monadic ΠP

𝑘 -complete. This gives a ΣP
𝑘 lower bound for MSO query evaluation over arbitrary

structures. At the same time Lemma 10 allows to reduce the latter problem to the one of TMSOJ,
which immediately gives us the lower bound for data complexity. The upper bound for data
complexity follows from [23] where Stockmeyer showed that monadic ΣP

𝑘 is in ΣP
𝑘 .

Deciding essential joins As we saw, joins are expensive in TMSOJ for querying documents
and p-documents. In contrast TMSO queries are tractable over both deterministic and probabilistic
documents. What we study now is the problem of determining whether a TMSOJ query is
essentially join-free and, consequently, can be evaluated efficiently.

Theorem 11. Deciding if a query has an essential join is undecidable for TFOJ and TMSOJ.

We will prove this theorem by reduction from finite satisfiability for first order logic formulas,
which is known to be undecidable [25].

14



Query Language Deciding Joins

TMSOJ undecidable
TFOJ undecidable
TPJ ΠP

2 -complete
TPJ{/,[]} NP-complete

Table 4.2: Complexity of deciding essential joins

The next lemma shows that TFO queries are insensitive to the multiplicity of constants that
occur in the documents but not in the queries. We need the following notions. Let 𝑑 be a document
where a label 𝑎 occurs 𝑘 times. We denote by 𝑑𝑎 a document obtained from 𝑑 by replacing each
occurrence of 𝑎 with a distinct fresh constant. A canonical document 𝑑𝑞 for a TPJ query 𝑞 is a
document that is obtained from 𝑞 by replacing every descendant edge with a child edge and by
replacing each different variable with a fresh constant.

Lemma 12. Let 𝑞 be a TFO or TP query, 𝑑 a document and 𝑎 ∈ ℒ a label occurring in 𝑑 multiple
times, but not occurring in 𝑞. Then 𝑑 |= 𝑞 if and only if 𝑑𝑎 |= 𝑞.

Proof. If 𝑞 is a TP query, then the lemma holds due to the fact that only nodes of 𝑞 labeled with
variables can be mapped to the nodes of 𝑑 labeled with 𝑎. Every variable of 𝑞 occurs only once
and, therefore, any “renaming” of labels for nodes labeled 𝑎 does not change the query result. In
particular, renaming with fresh labels does not change the query result.

For a non-Boolean query 𝑞 and a valuation 𝜈 mapping free variables of 𝑞 to the nodes of 𝑑, we
say that 𝑑, 𝜈 |= 𝑞 if 𝜈(𝑞) is true in 𝑑. We prove by induction on 𝑞: 𝑑, 𝜈 |= 𝑞 if and only if 𝑑𝑎, 𝜈 |=
𝑞.

Base case. If 𝑞 = Ch(𝑥, 𝑦) or 𝑞 = Label𝑏(𝑥) (with 𝑏 ̸= 𝑎), then the lemma obviously holds,
since in 𝑑𝑎, 𝜈(𝑦) is still the child of 𝜈(𝑥) and 𝑥 is still labeled with 𝑏.

Induction step. Let 𝑞1 and 𝑞2 be two TFO queries for which the lemma holds. If 𝑞 = 𝑞1 ∧ 𝑞2,
then 𝑑𝑎, 𝜈 |= 𝑞1 ∧ 𝑞2 holds if and only if both 𝑑𝑎, 𝜈 |= 𝑞2 and 𝑑𝑎, 𝜈 |= 𝑞2 hold, which is the
case by the induction assumption. For 𝑞 = ¬𝑞1 the proof is analogous. If 𝑞 = ∃𝑥 𝑞1(𝑥), then
𝑑, 𝜈 |= ∃𝑥 𝑞1(𝑥) implies there exists a node 𝑛 in 𝑑 such that 𝑑, 𝜈 ∪ {𝑥/𝑛} |= 𝑞1, which, by the
induction assumption, implies that 𝑑𝑎, 𝜈 ∪ {𝑥/𝑛} |= 𝑞1 and, consequently, 𝑑𝑎, 𝜈 |= ∃𝑥 𝑞1(𝑥).
Similarly in the other direction. Since ∀ and ∨ can be expressed with ∃, ∧ and ¬, this concludes
our proof.

Now we can prove Theorem 11.

Proof of Theorem 11. By reduction from finite satisfiability of first-order formulas over relational
structures.

Let 𝜙 be an FO formula and 𝑔(𝜙) be the corresponding TFOJ formula constructed as described
in Lemma 10. Consider the TPJ query 𝑞 in Figure 4.1, center; with a slight abuse of notation, we
denote its TFOJ encoding also as 𝑞. Assume that 𝑞 and 𝑔(𝜙) have no common labels. It is easy to
see that 𝑞 has an essential join.

We now show that

15



1. If the TFOJ formula (𝑔(𝜙) → 𝑞) has no essential joins, then 𝜙 is not finitely satisfiable.
2. If the TFOJ formula (𝑔(𝜙) → 𝑞) has an essential join, then 𝜙 is finitely satisfiable.
Assume 𝑔(𝜙) → 𝑞 has no essential joins, that is, (𝑔(𝜙) → 𝑞) ≡ 𝜓, where 𝜓 ∈ FO. If 𝜙 is

finitely satisfiable, then there is a finite structure 𝒜, s.t., 𝒜 |= 𝜙. Let 𝑑 = 𝑓(𝒜) be the document
computed from 𝒜 as described in Lemma 10. W.l.o.g. we can assume that 𝑑 has no labels
occurring in 𝑞. By this lemma, 𝑑 |= 𝑔(𝜙).

Consider a new document 𝑑1, that is a combination of 𝑑 and 𝑑𝑞, a canonical document of 𝑞,
as in Figure 4.1, right, where 𝑎 does not occur in 𝑑. Clearly 𝑑1 |= 𝜓 holds and consequently by
Lemma 12, 𝑑𝑒

1 |= 𝜓 also holds. Since by construction 𝑑𝑒
1 |= 𝑔(𝜙), we conclude 𝑑𝑒

1 |= 𝑞. At the
same time, since 𝑞 has a join variable, 𝑑𝑒

1 ̸|= 𝑞. We obtain a contradiction.
Assume 𝑔(𝜙) → 𝑞 has an essential join. If 𝜙 is not finitely satisfiable, then, due to Lemma 10,

we conclude that 𝑔(𝜙) is not finitely satisfiable. Therefore, the implication 𝑔(𝜙) → 𝑞 is a
tautology, expressible without joins, and consequently the implication has no essential joins. We
obtain a contradiction.

The proof shows that the set of formulas with essential joins is not co-recursively enumerable.
On the other hand, the set of finitely satisfiable FO formulas is recursively enumerable, but we do
not know if this is also true of deciding essential joins: a TFOJ query 𝑞 has essential joins iff for
every TFO query 𝑞′, there exists a finite tree modeling of one but not the other. This alternation of
quantifiers does not lend itself to a straightforward enumerability proof.

16



5 Tree-Pattern Queries with Joins

In the previous section we showed that joins increase worst-case data complexity of TMSO,
while they do not affect combined complexity. What we do not know is whether all queries in
TMSOJ not in TMSO are hard, or whether there are some queries with essential joins that are still
tractable. A TPJ query is a basic join query if it has exactly one join variable and this variable
occurs exactly twice. As we now show, in the case of basic join queries, every query that is not
equivalent to a query in TP is FP#P-hard for probabilistic documents.

Querying documents We first study data and combined complexity of TPJ query evaluation
over deterministic documents. Recall that TP query answering over XML is polynomial in
combined complexity. The situation changes for TPJ: we now show that evaluation of TPJ queries
over XML is essentially the same as querying relational structures with conjunctive queries.

Proposition 13. Query evaluation for TPJ over XML is PTime in data complexity and NP-
complete in combined complexity.

Our proof is based on the observation that TPJ over XML behaves in the same way as the class
of conjunctive queries over arbitrary relational structures.

Lemma 14. Let Σ = {Ch,Desc, Label}. Then there exist functions 𝑓 and 𝑔 computable in
PTime such that

(i) for every document 𝑑, 𝑓(𝑑) is a relational structure over Σ and
(ii) for every TPJ query 𝑞, 𝑔(𝑞) is a conjunctive query over Σ,

such that 𝑑 |= 𝑞 if and only if 𝑓(𝑑) |= 𝑔(𝑞).

Proof. For every two nodes 𝑛 and 𝑚 of 𝑞 the encoding 𝑓 introduces the tuple (𝑛,𝑚) in the
relation Ch if 𝑛/𝑚 ∈ 𝑞, the tuple (𝑛,𝑚) in the relation Desc if 𝑛//𝑚 ∈ 𝑞 or 𝑛,𝑚 are in the
transitive and reflexive closure of / in 𝑞. For every node 𝑛 of 𝑞 labeled 𝑎 the encoding 𝑓 introduces
the tuple (𝑛, 𝑎) in the relation Label. The encoding of a TPJ query 𝑞 is straightforward, 𝑔(𝑞)
is the conjunction of the following atoms: Ch(𝑛,𝑚) for every 𝑛/𝑚 in 𝑞, Desc(𝑛,𝑚) for every
𝑛//𝑚 in 𝑞, Label(𝑛, 𝑎) for every 𝑛 in 𝑞 labeled 𝑎. Clearly 𝑑 |= 𝑞 if and only if 𝑓(𝑑) |= 𝑔(𝑞).

Proof of Proposition 13. Lemma 10 restricted to conjunctive queries gives their encoding in TPJ
and the NP-hardness of combined complexity, since the combined complexity of query evaluation
over relational structures is NP-complete for conjunctive queries [6]. NP-membership holds
since one can guess a mapping from the nodes of a TPJ query to the nodes of a document and
check in polynomial time that the mapping is a valuation.

It is known that data complexity of query evaluation for conjunctive queries is in PTime [15].
Combining this result with Lemma 14 gives the data complexity for TPJ.

17



root

x

� r

x

root

r

det det

mux mux

... ...� r

C4C2 C3

v:

pos: neg:

C1

...1/2 1/2

q� :

a

r

q1
q2

x1 x2

�Pϕ :q :

Figure 5.1: For Theorem 15. Left: a TPJ query 𝑞 with an essential join and a p-document ̂︀𝒫𝜙

encoding 𝜙 = (𝑤1 ∧ 𝑣) ∨ (¬𝑣 ∧ 𝑤2) ∨ (¬𝑣 ∧ 𝑤3) ∨ (𝑤4 ∧ ¬𝑣). Right: a general
pattern 𝑞′ of a TPJ query with an essential join.

Gottlob et al. in [13] studied conjunctive queries over trees that are related to TPJ. In their
setting joins can be done on identical nodes only, while we can join arbitrary nodes as long as
they carry the same label. As we showed in Lemma 9, this allows us to encode queries about
arbitrary relational structures into our query model and data model. Therefore, our Proposition 13
follows from well-known results about relational conjunctive queries, which is not true for the
results in [13].

Querying p-documents We show that for basic join queries, there is a dichotomy between
tractable and intractable queries. It is promising that this dichotomy has a very simple charac-
terization, even more so when it is contrasted with the dichotomy of conjunctive queries over
tuple-independent probabilistic databases [10], where the condition for hardness is much more
involved.

Theorem 15 (Dichotomy). For every basic join query 𝑞, evaluation over PrXMLmux,det is
∙ feasible in time linear if 𝑞 is essentially join-free;
∙ FP#P-complete in data complexity otherwise.

To show the data complexity upper bound we need the following lemma, that can be proved by
adopting the techniques developed by Grädel, Gurevich, and Hirsch in [14].

Lemma 16. Let 𝒬 be a query language with polynomial-time data complexity over XML. Then
𝒬 is of FP#P data complexity over PrXMLmux,det.

We use generating Turing machines to prove Lemma 16. We say that a nondeterministic Turing
machine is a generating machine if (1) all runs produce an output; (2) all runs terminate either in
an accepting state or a non-accepting state. Let 𝑇 be a generating Turing machine with alphabet
Σ and 𝑢 ∈ Σ*. Then we denote by 𝑇 (𝑢) the multiset of outputs of 𝑇 produced upon input 𝑢 by
an accepting run where the multiplicity of an output is equal to the number of accepting runs.

The proof of Lemma 16 is based on the following property of generating Turing machines.

Lemma 17. Let 𝑇 be a generating polynomial time Turing machine with alphabet Σ and let
𝑔 : Σ* → N be a function computable in polynomial time. Then

𝑓(𝑢) :=
∑︁

𝑤∈𝑇 (𝑢)

𝑔(𝑤), (5.1)

18



where 𝑔(𝑤) is summed as often as 𝑤 occurs in 𝑇 (𝑢), defines a function 𝑓 : Σ* → N such that
𝑓 ∈ #P.

Proof. We extend the machine 𝑇 to a machine 𝑇 ′ in such a way that the number of accepting runs
of 𝑇 ′ for input 𝑢 is exactly 𝑓(𝑢) as follows. The machine 𝑇 ′ first calls 𝑇 on 𝑢. When 𝑇 reaches
an accepting state with output 𝑤, then 𝑇 ′ computes 𝑔(𝑤) and creates 𝑔(𝑤) non-deterministic
accepting branches, each of which corresponds to an accepting run.

We are now ready to prove the lemma.

Proof of Lemma 16. We show that the probability that a query of 𝒬 matches a p-document ̂︀𝒫
can be computed in polynomial time using a #P-oracle.

We assume that the p-document ̂︀𝒫 has mux distributional nodes 𝑛1 . . . 𝑛𝑚 with corresponding
distributions Δ(𝑛𝑖) over rational numbers. Let 𝐾 be the product of the denominators of all the
probabilities defined by all Δ(𝑛𝑖). We note that 𝐾 can be computed in polynomial time and that
𝐾 · 𝑝𝑖

𝑗 , where 𝑝𝑖
𝑗 is the probability of the 𝑗-th child of the node 𝑛𝑖 defined by Δ(𝑛𝑖), is a natural

number for all mux distributional nodes 𝑛𝑖, 1 ≤ 𝑖 ≤ 𝑚, and all their children.
We show there is a #P-oracle that computes

𝑓( ̂︀𝒫) := 𝐾𝑚 · Pr(𝑄(𝒫)).

Then the desired probability is obtained by dividing 𝑓( ̂︀𝒫) by 𝐾𝑚, which can clearly be done in
polynomial time. By Lemma 17 it is sufficient to exhibit a generating Turing machine 𝑇 and a
polynomial-time function 𝑔 so that 𝑓 can be represented as in (5.1). Now, 𝑇 works as follows.
For the input ̂︀𝒫 , it

(i) computes 𝐾 and writes it on the tape;
(ii) nondeterministically chooses a child of every mux distributional node 𝑛𝑖 and writes it on

the tape;
(iii) computes 𝑄(𝑑) for the document 𝑑 corresponding to the choice on Step (ii), (this evaluation

can be done in polynomial-time since 𝒬 has polynomial-time data complexity over XML
by the lemma’s assumption); and

(iv) if 𝑄(𝑑) = true, then accepts, else does not accept.
The function 𝑔 computes the probability 𝑝 of the choice on Step (ii) and multiplies it by 𝐾𝑚. By
definition of 𝑇 and 𝑔,

𝐾−𝑚
∑︁

𝑤∈𝑇 ( ̂︀𝒫)

𝑔(𝑤) = Pr(𝑄(𝒫)),

which concludes our proof.

We proceed with the proof of Theorem 15.

Proof of Theorem 15. Lemma 16 and Proposition 13 give the upper bound, while an extension
of the proof for Lemma 9 [1] gives hardness by reduction from #2-DNF satisfiability.

We first exhibit a #P-hard TPJ query 𝑞 and then show how to generalize the construction to
TPJ queries with just one variable that occurs twice. Consider the TPJ query 𝑞 in Figure 5.1 (left),
that clearly has an essential join.

19



Consider an encoding of the 2-DNF formula:

𝜙 = (𝑤1 ∧ 𝑣) ∨ (¬𝑣 ∧ 𝑤2) ∨ (¬𝑣 ∧ 𝑤3) ∨ (𝑤4 ∧ ¬𝑣)

as a p-document ̂︀𝒫𝜙 in Figure 5.1 (left) that one can immediately generalize to arbitrary 2-DNF
formulas. Observe that every 𝑑 ∈ J ̂︀𝒫𝜙K has the same probability, say 𝑝, and Pr( ̂︀𝒫𝜙 |= 𝑞) = 𝑝×𝑛,
where 𝑛 is the number of satisfying assignments for 𝜙. Thus, answering TPJ queries over
PrXMLmux,det is #P-hard.

We now show the #P-hardness using the same kind of reduction as for the query 𝑞 above. Let
𝑞 be a TPJ query with one variable 𝑥 occurring twice. To distinguish these two occurrences we
refer to them as 𝑥1 (labeling a node 𝑛1 of 𝑞) and 𝑥2 (labeling 𝑛2). We now exhibit a p-document
̂︀𝒫 ′𝜙 such that computation of Pr(𝒫 ′𝜙 |= 𝑞) is #P-hard. ̂︀𝒫 ′𝜙 is composed of two parts: the first one,
̂︀𝒫 ′′𝜙, is for the subqueries 𝑞𝑥1 and 𝑞𝑥2 of 𝑞′ related to 𝑥1 and 𝑥2, and the second one, 𝑑, for the
remaining part of 𝑞′, that is, 𝑞′ without 𝑞𝑥1 and 𝑞𝑥2 . We now present 𝑞𝑥𝑖’s, then ̂︀𝒫 ′′𝜙 and finally 𝑑.

Let 𝑟 be the root of 𝑞. Since in TPJ queries join variables label only leaves, there are two paths
in 𝑞: from 𝑟 to the leaf 𝑥1 and from 𝑟 to 𝑥2. These paths may share some nodes, thus, assume the
node 𝑚 labeled 𝑎 is the least common ancestor of 𝑥1 and 𝑥2, see Figure 5.1 (right). Let 𝑞𝑥1 be
the maximal subquery of 𝑞 such that (i) its root is the child of 𝑎, (ii) its root is between 𝑎 and 𝑥1.
A query 𝑞𝑥2 for 𝑥2 is defined analogously.

Now observe that 𝑎 cannot be a parent of both 𝑥1 and 𝑥2 in 𝑞, otherwise 𝑥 is not an essential
join. Indeed, if 𝑎 is the parent of both 𝑥1 and 𝑥2, then by deleting one of the nodes labeled 𝑥𝑖

one obtains a query equivalent to 𝑞, which contradicts the essentialness of 𝑥. Let 𝑑1 and 𝑑2 be
documents such that 𝑑1 |= 𝑞𝑥1 while 𝑑1 ̸|= 𝑞𝑥2 , and 𝑑2 |= 𝑞2 while 𝑑2 ̸|= 𝑞1. Such 𝑑𝑖’s always
exist and can be constructed in EXPTime in the size of the 𝑞𝑖’s due to Proposition 3 of [20].

We modify 𝑑1 further as 𝑑′1 by adding a child node with a fresh label to all leaf nodes of 𝑑1

except for one given homomorphic image 𝑢1 of 𝑥1 from 𝑞𝑥1 into 𝑑1. This will ensure that the
value join will necessarily involve this specific node and not another one of 𝑑1, thanks to our
condition that joins only match document leaves. We transform similarly 𝑑2 into 𝑑′2.

Assume 𝑎 is a proper ancestor (ancestor but not a parent) of either 𝑥1 or 𝑥2. Consider the
p-document ̂︀𝒫 ′′𝜙 obtained from ̂︀𝒫𝜙 by (i) re-labeling the root with 𝑎, (ii) substituting every node
labeled 𝑙 with the document 𝑑′1 (if 𝑞1 is empty, then 𝑙 is substituted with a det node), and (iii) every
node labeled 𝑟 with 𝑑′2 (if 𝑞2 is empty, then 𝑟 is substituted with a det node). Here, substituting
a node labeled 𝑙 with 𝑑′1 means the following. Let node 𝑛 be labeled 𝑙. Then (i) a copy of 𝑑′1 is
inserted below the parent of 𝑛 (that is, 𝑛 is replaced with 𝑑′1); (ii) for the homomorphic image 𝑢1

of 𝑥1 that has been previously chosen, we insert a new det node into 𝑑′1 as a sibling of 𝑚𝑖; and
(iii) copy all children of 𝑛 below that det node. In a similar fashion, we substitute 𝑟 with 𝑑′2.

Let the query 𝑞′ be a obtained from 𝑞 by deleting 𝑞𝑥1 and 𝑞𝑥2 together with 𝑥1 and 𝑥2. Since 𝑥
is essential in 𝑞, we have 𝑞′ ̸⊑ 𝑞, hence, there is a document 𝑑 such that 𝑑 |= 𝑞′ and 𝑑 ̸|= 𝑞. Let 𝜈
be a homomorphism from 𝑞′ to 𝑑 and 𝑘 = 𝜈(𝑚).

Finally, the p-document ̂︀𝒫 ′𝜙 is obtained from 𝑑 by inserting at the node 𝑘 the subtrees of ̂︀𝒫 ′′𝜙
rooted at its root. Observe that by construction of ̂︀𝒫 ′𝜙, the probability of every 𝑑′ ∈ J ̂︀𝒫 ′𝜙K is again
𝑝.

We now show that Pr( ̂︀𝒫 ′𝜙 |= 𝑞′) = 𝑝 × 𝑛, where 𝑛 is the number of satisfying assignments
for 𝜙. Indeed, observe that in the query composed of 𝑞𝑥1 and 𝑞𝑥2 rooted at 𝑚 𝑥 is an essential

20



join. Moreover, this query can not be homomorphically embedded in 𝑑 (due to construction of 𝑑)
and in a document 𝑑′′ ∈ J ̂︀𝒫 ′′𝜙K in a way that none of 𝑥1 and 𝑥2 is mapped to 𝐶𝑖, for some clause 𝑖
(due to the fact that 𝑥 is essential). This gives us that for every 𝑑′ ∈ J ̂︀𝒫 ′𝜙K: 𝜇 is a homomorphism
from 𝑞 to 𝑑′ iff the label of 𝜇(𝑛1) = 𝜇(𝑛2) = 𝐶𝑖, for some clause 𝑖. Thus, by construction of ̂︀𝒫 ′𝜙,
there is a bijection 𝜒 between the set of worlds of J ̂︀𝒫 ′𝜙K that satisfy 𝑞 and the set 𝑀 of satisfying
assignments of 𝜙, which yields:

Pr( ̂︀𝒫 ′𝜙 |= 𝑞) =
∑︁

𝜇∈𝑀

Pr(𝜒(𝜇)) =
∑︁

𝜇∈𝑀

𝑝 = 𝑝 · |𝑀 |,

and concludes the proof.

It is open whether this dichotomy theorem can be extended to the general case of multiple
variables with possibly more than two occurrences. Another important limitation of this result is
that it only holds when join variables are required to be on query leaves (value joins). It is for
instance easy to see that if two join variables label nodes in a parent-child relationship, the query
can be evaluated efficiently even if the join is essential. This comes from the fact that given a
p-document node, it is possible to deterministically get the label of its parent. In a more general
setting where the label of internal nodes can be given by a probability distribution, the dichotomy
proof can be adapted.

Now we know that essential joins are an important criterion to determine whether queries are
intractable. Thus, it is important to be able to detect whether a TPJ query is essentially join-free.
In the next section we present a conceptually simple test for essential joins. Unfortunately, as we
also show, this test is intractable.

Deciding essential joins We define the core of a TPJ query 𝑞, denoted cr(𝑞), as the TP
query obtained from 𝑞 by replacing every occurrence of a join variable with a distinct fresh
variable.

Theorem 18. A TPJ query 𝑞 has no essential joins iff 𝑞 ≡ cr(𝑞).

To prove this we use the following fact due to Miklau and Suciu [20]. Let 𝑞 be a TPJ query
and 𝑛 the length of 𝑞’s longest chain of nodes, where all nodes are labeled with wildcards (i.e.,
non-join variables) and all edges are child edges. Let 𝑎 ∈ ℒ be a label that does not occur in 𝑞
and 𝐷𝑎,𝑞 is the set of documents obtained from 𝑞 by (i) expanding every descendant-edge into a
chain of child-edges of length at most 𝑛+ 1, (ii) labeling every node of these chains with 𝑎, and
(iii) substituting every variable with a fresh label.

Fact 19 ([20]). Let 𝑞1 and 𝑞2 be TP queries and let 𝑎 be a label that does not occur in 𝑞1 and 𝑞2.
Then 𝑞1 ⊑ 𝑞2 if and only if 𝑑 |= 𝑞2 for every document 𝑑 ∈ 𝐷𝑎,𝑞1 .

Proof of Theorem 18. The if direction is obvious. For only-if, assume 𝑞 ≡ 𝑞 for a TP query 𝑞.
We show that 𝑞 ≡ cr(𝑞). Since 𝑞 ⊑ cr(𝑞) obviously holds, we will prove cr(𝑞) ⊑ 𝑞.

Assume that 𝑞 has exactly one join variable, that is, there is exactly one variable 𝑥 occurring in
𝑞 more than once. Let 𝑁 be all nodes in 𝑞 labeled with 𝑥.

21



r

c2c1

1 2 3

x y1 y2

1 2 3

xy3 y1

r

c 1

ax

ax

b
1

ax
b

0

0 0 0

a a

1 2 3

a ... ...

ax
b

x ax

1 1 1

1 2 3

a

0 1 0

1 2 3

a
c 2

0 0 0

1 2 3

a ... ...

1 1 1

1 2 3

a

0 1 1

1 2 3

a

qϕ :qa :

assignments for C1 assignments for C2
generator of
assignments

generator of
assignments

encoding 
of C1  

encoding 
of C2  qg

a: qg
φ: qC1

φ : qC2
φ :qC2

a :qC1
a :

*b
0

*b
0

Figure 5.2: Example illustrating encoding of QBF validity for 𝜙 = ∀𝑥∃𝑦1𝑦2𝑦3.(𝑥 ∨ ¬𝑦1 ∨ 𝑦2) ∧
(𝑦3 ∨ ¬𝑥 ∨ ¬𝑦1) in an instance of containment problem for TPJ queries 𝑞𝑎 ⊑ 𝑞𝜙

Let 𝑎 and 𝑏 be fresh constants for both 𝑞 and 𝑞. Consider the set of documents 𝐷𝑎,𝑞, where,
w.l.o.g., we assume that in every 𝑑 ∈ 𝐷𝑎,𝑞 all the nodes of 𝑁 are labeled with 𝑏. By construction,
for every 𝑑 ∈ 𝐷𝑎,𝑞 we have 𝑑 |= 𝑞. Hence, 𝑑 |= 𝑞 also holds and, by Lemma 12, we obtain
𝑑𝑏 |= 𝑞. Let us collect all such 𝑑𝑏’s in 𝐷𝑏

𝑎,𝑞, that is, 𝐷𝑏
𝑎,𝑞 = {𝑑𝑏 | 𝑑 ∈ 𝐷𝑎,𝑞}. By construction

𝐷𝑏
𝑎,𝑞 = 𝐷𝑎,cr(𝑞), and we are in the conditions of Fact 19: 𝑞1 = cr(𝑞) and 𝑞2 = 𝑞 are two TP

queries such that for every 𝑑 ∈ 𝐷𝑎,cr(𝑞) it holds 𝑑 |= 𝑞. Hence, cr(𝑞) ⊑ 𝑞 and, due to equivalence
of 𝑞 and 𝑞, we obtain cr(𝑞) ⊑ 𝑞.

The proof can be extended to the general case, when 𝑞 has more than one join variable, by
iterating the construction above over all join variables.

We have a conceptually simple test for essential joins: it is sufficient to test that a query is
equivalent to its core to guarantee that it is essentially join-free. The next theorem shows that this
test is expensive for the class of queries with at least child navigation and branching.

Theorem 20. Deciding if a query has an essential join is ΠP
2 -complete for TPJ and NP-complete

for TPJ{/,[]}.

Our proof of Theorem 20 is based on the following three properties.

Lemma 21. Let 𝑞1 be a TP, 𝑞2 be a TPJ query and 𝑞1 ⊑ cr(𝑞2). Then

(𝑞1 ∧ cr(𝑞2)) ⊑ (𝑞1 ∧ 𝑞2) if and only if 𝑞1 ⊑ 𝑞2.

Proof. The inclusion 𝑞1 ⊑ cr(𝑞2) implies that (𝑞1 ∧ cr(𝑞2)) ≡ 𝑞1. Hence, it remains to show that

𝑞1 ⊑ (𝑞1 ∧ 𝑞2) if and only if 𝑞1 ⊑ 𝑞2,

which clearly holds.

Recall that validity of quantified Boolean formulas with a prefix of the form ∀ . . . ∃ . . . is
ΠP

2 -complete even when the matrix is a conjunction of 3-clauses.

Lemma 22. Let 𝜙 be a quantified Boolean formula with a prefix of the form ∀ . . . ∃ . . . and the
matrix a conjunction of 3-clauses. Then one can compute in polynomial time two TPJ queries 𝑞𝜙
and 𝑞𝑎, such that (i) 𝑞𝑎 ⊑ cr(𝑞𝜙), and (ii) 𝑞𝑎 ⊑ 𝑞𝜙 if and only if 𝜙 is valid.

22



Our proof is analogous to the one of Deutsch and Tannen in [11] for the problem of query
containment for XPath extensions. As a special case of the lemma above we have hardness for
TPJ{/,[]}.

Lemma 23. Let 𝜙 be an existentially quantified Boolean propositional formula in 3CNF. Then
one can compute in polynomial time two queries 𝑞𝑎 of TPJ{/,[]} without variables and 𝑞𝜙 of TPJ,
such that (i) 𝑞𝑎 ⊑ cr(𝑞𝜙), and (ii) 𝑞𝑎 ⊑ 𝑞𝜙 if and only if 𝜙 is valid.

Proof of Theorem 20. By Theorem 18 deciding whether 𝑞 has an essential join is reducible to
cr(𝑞) ⊑ 𝑞. Memberships for TPJ and TPJ{/,[]} follow from query containment results of [11].

To show the lower bound for TPJ consider the query 𝑞 = 𝑞𝑎 ∧ 𝑞𝜙. We will show that testing
𝑞 ≡ cr(𝑞) is ΠP

2 -hard. It is easy to see that cr(𝑞𝑎 ∧ 𝑞𝜙) = 𝑞𝑎 ∧ cr(𝑞𝜙). Moreover, by construction
of 𝑞𝑎 and 𝑞𝜙, we have 𝑞𝑎 ⊑ cr(𝑞𝜙) and, consequently, we are in the conditions of Lemma 21.
Indeed, consider 𝑞1 = 𝑞𝑎 and 𝑞2 = 𝑞𝜙. Hence, 𝑞 ≡ cr(𝑞) iff 𝑞𝑎 ⊑ 𝑞𝜙. Due to Lemma 22 the
latter test is ΠP

2 -hard.
The lower bound for TPJ{/,[]} queries can be shown analogously by using 𝑞𝑎 and 𝑞𝜙 of

Lemma 23.

23



6 Conclusion and Directions
We studied complexity of query evaluation over XML and probabilistic XML for tree-pattern
and monadic second-order queries with joins. We also investigated the complexity of deciding
essential joins. Our results are summarized in Tables 4.1 and 4.2.

There are a number of open questions remaining in our study: a tight complexity bound for
combined complexity of TPJ over PrXML, semi-decidability of essential joins for TMSOJ, and a
criterion for deciding essential joins in TMSOJ.

Another major open question is whether the dichotomy of tractability for basic TPJ queries ex-
tend to arbitrary ones, still relying on the notion of essential join. If it does, we have a remarkable
contrast with what happens for relational probabilistic data. Our dichotomy is conceptually very
simple: it is sufficient to test that a query is equivalent to its core to guarantee that it is tractable,
but this test itself is intractable in the query size. In the relational setting, Dalvi and Suciu proved
a dichotomy for conjunctive queries [10] over block-independent databases which guarantees
tractability of queries, but involves a conceptually complicated, though polynomial-time testable,
characterization of queries. We would like to understand better the connections between these
dichotomy results, if any.

Continuing with the discussion after the proof of Theorem 15 on the dichotomy, another further
direction to study is a more general form of joins in queries. In our query model we allow for
joins on document leaves only, while one may also think of structural joins, that is, joins which
can be imposed on the labels of intermediate nodes in trees and not only on the leaves. One
way of preserving the results of this paper in the setting of both value and structural joins is to
consider a slightly different data model. The current model allows for distributional nodes that
define structural probabilistic alternatives, that is, it allows for distributions on children of nodes
only. What we need are non-structural probabilistic alternatives, that is, distributional nodes that
define alternatives of labels for a given node. For example, we should be able to express that a
node 𝑛 of a document is labeled either with 𝑎 or 𝑏.

Another direction is a more general study of joins in the context of both queries and data. Recall,
when queries and probabilistic data are tree-shaped, query answering is tractable, while adding
joins to queries makes it hard. An analogous situation happens when we add a form of joins in
data, as it is done in [2], where probabilistic XML is defined by means of probabilistic annotations
(that are conjunctions of literals over Boolean random variables) on the nodes of documents. For
such probabilistic data query answering becomes hard for tree-shaped queries: every TP query is
either trivial, i.e., it retrieves just the root of the data, or it is FP#P-complete [16], and we again
have a dichotomy. Note that the probabilistic data of [2] is tree-shaped, but the dependencies
between the annotations are graph structured. Another way of introducing joins in data is by
considering data graphs, where MSO query answering is ΣP

𝑘 -complete [3]. To sum up, joins
can be seen as a way to add graph structure either to queries, or to data (on the level of data
itself or on the level of probabilistic dependancies), and we are missing a study that bridges these
alternatives.

24



Bibliography

[1] S. Abiteboul, T.-H. H. Chan, E. Kharlamov, W. Nutt, and P. Senellart. Aggregate queries
for discrete and continuous probabilistic XML. In ICDT, 2010.

[2] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart. On the expressiveness of probabilistic
XML models. VLDB J., 18(5):1041–1064, 2009.

[3] M. Ajtai, R. Fagin, and L. J. Stockmeyer. The closure of monadic NP. J. Comput. Syst. Sci.,
60(3), 2000.

[4] M. Benedikt, E. Kharlamov, D. Olteanu, and P. Senellart. Probabilistic XML via Markov
chains. PVLDB, 3(1):770–781, 2010.

[5] M. Benedikt and C. Koch. XPath leashed. ACM Comput. Surv., 41(1), 2008.

[6] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
data bases. In Proc. STOC, 1977.

[7] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of Web information
extraction systems. IEEE TKDE, 18(10), 2006.

[8] S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree automata on probabilistic XML. In
PODS, 2009.

[9] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: Diamonds in the dirt. CACM, 52(7),
2009.

[10] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic structures. In
PODS, 2007.

[11] A. Deutsch and V. Tannen. Containment and integrity constraints for XPath. In Proc. KRDB,
2001.

[12] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty. VLDB J., 18(2),
2009.

[13] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. J. ACM, 53(2):238–
272, 2006.

[14] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability. In Proc. PODS,
1998.

25



[15] N. Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,
1987.

[16] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query evaluation over probabilistic XML.
VLDB J., 18(5):1117–1140, 2009.

[17] C. Koch. MayBMS: A system for managing large uncertain and probabilistic databases.
In C. Aggarwal, editor, Managing and Mining Uncertain Data. Springer, New York, NY,
2009.

[18] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic models
for segmenting and labeling sequence data. In Proc. ICML, San Fransisco, CA, 2001.
Morgan Kaufmann.

[19] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[20] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM,
51(1), 2004.

[21] A. Nierman and H. V. Jagadish. ProTDB: Probabilistic data in XML. In Proc. VLDB, 2002.

[22] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. VLDB
J., 2001.

[23] L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

[24] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages. Springer-Verlag, 1997.

[25] B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite classes.
American Mathematical Society Translations Series 2, 23, 1963.

[26] M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic XML approach to data
integration. In ICDE, pages 459–470, 2005.

[27] M. Y. Vardi. The complexity of relational query languages (extended abstract). In STOC,
1982.

[28] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In
Proc. CIDR, pages 262–276. Online Proceedings, 2005.

26


	Introduction
	Preliminaries
	Queries with Value Joins
	Tree-MSO Queries with Joins
	Tree-Pattern Queries with Joins
	Conclusion and Directions

